Exercise 2

A particle moves according to a law of motion $s=f(t), t \geq 0$, where t is measured in seconds and s in feet.
(a) Find the velocity at time t.
(b) What is the velocity after 1 second?
(c) When is the particle at rest?
(d) When is the particle moving in the positive direction?
(e) Find the total distance traveled during the first 6 seconds.
(f) Draw a diagram like Figure 2 to illustrate the motion of the particle.
(g) Find the acceleration at time t and after 1 second.
(h) Graph the position, velocity, and acceleration functions for $0 \leq t \leq 6$.
(i) When is the particle speeding up? When is it slowing down?

$$
f(t)=\frac{9 t}{t^{2}+9}
$$

Solution

Part (a)
To find the velocity, take the derivative of the position function.

$$
\begin{aligned}
v(t) & =\frac{d s}{d t} \\
& =\frac{d}{d t}\left(\frac{9 t}{t^{2}+9}\right) \\
& =\frac{\left[\frac{d}{d t}(9 t)\right]\left(t^{2}+9\right)-(9 t)\left[\frac{d}{d t}\left(t^{2}+9\right)\right]}{\left(t^{2}+9\right)^{2}} \\
& =\frac{(9)\left(t^{2}+9\right)-(9 t)(2 t)}{\left(t^{2}+9\right)^{2}} \\
& =\frac{81-9 t^{2}}{\left(t^{2}+9\right)^{2}}
\end{aligned}
$$

Part (b)

The velocity after 1 second has elapsed is

$$
v(1)=\frac{81-9(1)^{2}}{\left(1^{2}+9\right)^{2}}=\frac{72}{100}=\frac{18}{25} \frac{\text { feet }}{\text { second }} .
$$

Part (c)

To find when the particle is at rest, set the velocity function equal to zero and solve the equation for t.

$$
\begin{gathered}
v(t)=0 \\
\frac{81-9 t^{2}}{\left(t^{2}+9\right)^{2}}=0 \\
81-9 t^{2}=0 \\
9\left(9-t^{2}\right)=0 \\
t=\{-3,3\}
\end{gathered}
$$

Since $t \geq 0$, the particle is at rest when $t=3$.

Part (d)

To find when the particle is moving in the positive direction, find what values of t satisfy $v(t)>0$.

$$
\begin{gathered}
v(t)>0 \\
\frac{81-9 t^{2}}{\left(t^{2}+9\right)^{2}}>0 \\
81-9 t^{2}>0 \\
9\left(9-t^{2}\right)>0 \\
9(3+t)(3-t)>0
\end{gathered}
$$

The critical values are -3 and 3 . Partition the number line at these points and test whether the inequality is true within each of the intervals.

Therefore, the particle is moving in the positive direction for $0 \leq t<3$.

Part (e)

The distance travelled in $0 \leq t<3$ is

$$
|s(3)-s(0)|=\left|\frac{9(3)}{(3)^{2}+9}-\frac{9(0)}{(0)^{2}+9}\right|=\frac{3}{2},
$$

and the distance travelled in $3<t \leq 6$ is

$$
|s(6)-s(3)|=\left|\frac{9(6)}{(6)^{2}+9}-\frac{9(3)}{(3)^{2}+9}\right|=\frac{3}{10} .
$$

Consequently, the total distance travelled in $0 \leq t \leq 6$ is $\frac{3}{2}+\frac{3}{10}=\frac{9}{5}$ feet.

Part (f)

Below is an illustration of the particle's motion from $t=0$ to $t=6$.

Part (g)

Calculate the derivative of the velocity to get the acceleration.

$$
\begin{aligned}
a(t) & =\frac{d v}{d t} \\
& =\frac{d}{d t}\left[\frac{81-9 t^{2}}{\left(t^{2}+9\right)^{2}}\right] \\
& =\frac{\left[\frac{d}{d t}\left(81-9 t^{2}\right)\right]\left(t^{2}+9\right)^{2}-\left(81-9 t^{2}\right)\left\{\frac{d}{d t}\left[\left(t^{2}+9\right)^{2}\right]\right\}}{\left(t^{2}+9\right)^{4}} \\
& =\frac{(-18 t)\left(t^{2}+9\right)^{2}-\left(81-9 t^{2}\right)\left[2\left(t^{2}+9\right) \cdot 2 t\right]}{\left(t^{2}+9\right)^{4}} \\
& =\frac{18 t^{5}-324 t^{3}-4374 t}{\left(t^{2}+9\right)^{4}}
\end{aligned}
$$

The acceleration after 1 second is

$$
a(1)=\frac{18(1)^{5}-324(1)^{3}-4374(1)}{\left(1^{2}+9\right)^{4}}=-\frac{117}{250} \frac{\text { feet }}{\text { second }^{2}} .
$$

Part (h)

Below is a plot of the position, velocity, and acceleration versus time for $0 \leq t \leq 6$.

Part (i)
The particle is speeding up when

$$
\begin{aligned}
& \frac{18 t^{5}-324 t^{3}-4374 t}{\left(t^{2}+9\right)^{4}}>0 \\
& 18 t^{5}-324 t^{3}-4374 t>0 \\
& 18 t\left(t^{2}-27\right)\left(t^{2}+9\right)>0 \\
& 18 t(t+\sqrt{27})(t-\sqrt{27})\left(t^{2}+9\right)>0 .
\end{aligned}
$$

The critical values are $-\sqrt{27}, 0$, and $\sqrt{27}$. Partition the number line at these points and test whether this inequality is true within each interval.

Consequently, the particle is speeding up when $\sqrt{27}<t \leq 6$.

The particle is slowing down when

$$
\begin{gathered}
\frac{18 t^{5}-324 t^{3}-4374 t}{\left(t^{2}+9\right)^{4}}<0 \\
18 t^{5}-324 t^{3}-4374 t<0 \\
18 t\left(t^{2}-27\right)\left(t^{2}+9\right)<0 \\
18 t(t+\sqrt{27})(t-\sqrt{27})\left(t^{2}+9\right)<0 .
\end{gathered}
$$

The critical values are $-\sqrt{27}, 0$, and $\sqrt{27}$. Partition the number line at these points and test whether this inequality is true within each interval.

Consequently, the particle is slowing down when $0 \leq t<\sqrt{27}$.

